Get reference code
Appearance
Sample
ProfessionalEngineering

Inverse Hyperbolic Functions

Calculation of inverse hyperbolic functions of given argument
Timur2011-06-17 22:36:33

See also Hyperbolic functions

This calculator shows values of inverse hyperbolic functions of given argument

Inverse Hyperbolic FunctionsCreative Commons Attribution/Share-Alike License 3.0 (Unported)
0.12345678901234567890
Inverse Hyperbolic Functions:

Areasine or inverse hyperbolic sine
\operatorname{Arsh}x=\ln(x+\sqrt{x^2+1})
Odd, continuously increasing function.

Areacosine or inverse hyperbolic cosine
\operatorname{Arch}x=\ln \left( x+\sqrt{x^{2}-1} \right)
Increasing function. Function is defined only for x greater or equal 1.

Areatangent or inverse hyperbolic tangent
\operatorname{Arth}x=\ln\left(\frac{\sqrt{1-x^2}}{1-x}\right)=\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)
Odd, continuously increasing function. Function is defined only for x greater then -1 and less then +1.

Areacotangent or inverse hyperbolic cotangent
\operatorname{Arcth}x=\ln\left(\frac{\sqrt{x^2-1}}{x-1}\right)=\frac{1}{2}\ln\left(\frac{x+1}{x-1}\right)
Odd, continuously decreasing function.

Areasecant or inverse hyperbolic secant
\operatorname{Arsch}x=\pm\ln\left(\frac{1+\sqrt{1-x^2}}{x}\right)
Multivalued function

Areacosecant or inverse hyperbolic cosecant
\operatorname{Arcsch}x=\left\{\begin{array}{l}\ln\left(\frac{1-\sqrt{1+x^2}}{x}\right),\quad x<0 \\ \ln\left(\frac{1+\sqrt{1+x^2}}{x}\right),\quad x>0\end{array}\right
Odd decreasing function. Function is not defined for x = 0.

Request a calculator
View all calculators
(498 calculators in total. )

Comments