ClapeyronMendeleev equation. The relationship between the number of moles of gas, the temperature, volume and pressure.
ClapeyronMendeleev equation. The relationship between the number of moles of gas, the temperature, volume and pressure.
This page exists due to the efforts of the following people:
 Author
 Timur  ClapeyronMendeleev equation. The relationship between the number of moles of gas, the temperature, volume and pressure.
 Translation author
 khajit_94  ClapeyronMendeleev equation. The relationship between the number of moles of gas, the temperature, volume and pressure.
 Created using the work of
 Timur  ClapeyronMendeleev equation. The relationship between the number of moles of gas, the temperature, volume and pressure.
The calculator below is used for ClapeyronMendeleev equation or state of ideal gas equation problems. Some of theory is placed below the calculator. There is also some problem examples below.
ClapeyronMendeleev equation problem examples

There is oxygen at 2.3 atmospheres and 23 degrees celsius in a 2.6litre flask.
Task: how much oxygen is in a flask?  Some amount of helium at 78 degrees celsius and 45.6 atmospheres pressure occupies a volume of 16.5 liters.
Task: What's the volume of this gas at normal conditions? (Note that normal conditions are the pressure of 1 atmosphere and 1celsius temperature.
We can enter these data in the calculator and choose what is needed to be counted (amount of moles, new volume, temperature of pressure) and input other data if needed and get a result.
Save the calculation to reuse next time, to extension embed in your website or share share with friends.
Now some formulas
ClapeyronMendeleev equation
where
P – gas pressure (e.g. in atmospheres)
V – gas volume(in litres);
T – gas temperature (in kelvins);
R – gas constant (0,0821 l·atm/mol·K).
Gas constant is 8,314 J/K·mol if SI is used.
As mmass of gas is in (kg) and mmolar mass of gas in kg/mol then m/M  number gas moles and the equation can be written as
where n  number of gas moles
And it's easy to notice that the ratio
is a constant value for the same amount of gas moles.
And this pattern was empirically established before the conclusion of the equation. This are socalled gas laws  Boyle–Mariotte law, GayLussac's law, Charles's law.
Boyle–Mariotte law says:
For a fixed amount of an ideal gas kept at a fixed temperature, pressure and volume are inversely proportional
GayLussac's law:
For a given mass m with a constant pressure P the gas volume is linearly dependent on the temperature
Charles's law:
For a given mass m with a constant volume V the gas pressure is linearly dependent on the temperature.
Looking at the equation, it is easy to verify the validity of these laws.
ClapeyronMendeleev equation, as well as the experimental laws of Boyle–Mariotte, GayLussac and Charles, are valid for a wide range of pressure, volume and temperature. I.e. in many cases these laws are suitable for practical use. But do not forget that when the pressure exceeds atmospheric pressure by 300400 times or temperatures are very high, there are deviations in these laws.
Actually, the ideal gas is called "ideal" because it has no deviations for this laws.
Comments