# Thermodynamics mixing problem solver

Online calculator to solve thermodynamic equilibrium problems, like finding final temperature when mixing fluids or finding required temperature for one of the fluids to achieve final mixed temperature

### This page exists due to the efforts of the following people:

**Author**- Timur - Thermodynamics mixing problem solver
**Created using the work of**- Timur - Thermodynamics mixing problem solver

This online calculator can solve thermodynamic equilibrium problems, like finding final temperature when mixing fluids or finding required temperature for one of the fluids to achieve final mixed temperature. The only condition is that there should not be any phase transition (or phase change) of substances. To solve the problem it uses thermal equilibrium equation, more on this below.

## Thermal equilibrium equation

In the process of reaching thermodynamic equilibrium, heat is transferred from the warmer object to the cooler object. Two objects are in thermal equilibrium if no heat flows between them when they are connected by a path permeable to heat, that is, they both have the same temperature. This is called the zeroth law of thermodynamics. A system is said to be in thermal equilibrium with itself if the temperature within the system is spatially and temporally uniform.

The thermodynamic system is called a thermally isolated system if it does not exchange mass or heat energy with its environment. In physics, the law of conservation of energy states that the total energy of an isolated system in a given frame of reference remains constant — it is said to be conserved over time.

The first law of thermodynamics can be stated as follows: during an interaction between a system and its surroundings, the amount of energy gained by the system must be exactly equal to the amount of energy lost by the surroundings. In case of thermally isolated system, we can say that during an interaction between objects inside a system (until it reaches thermal equilibrium), the amount of energy gained by one objects must be exactly equal to the amount of energy lost by another objects.

This is our **thermal equilibrium equation**.

In another form:

,

where n - number of objects in the system.

That is, **algebraic sum of all heat quantities (gained and lost) in thermally isolated system equals zero.**

If we replace heat quantities with the formula described here: Quantity of heat, we will get the following equation:

,

note that final temperature for all substances (T1, T2, ... Tn) should be the same, because of thermal equilibrium.

This is the equation used by calculator to find the unknown value. Also calculator can take into account quantity of heat gained or lost to the surroundings. This allows more broad range of problems to be solved.

To use the calculator, you need to properly fill out the table describing interacting substances. The usage instructions for different scenarios are listed below the calculator.

## Example problems

There are set of problems which can be solved using this calculator: final temperature of mixed fluids, required temperature for one of the fluids to achieve final mixed temperature, required mass for one of the fluids to achieve final mixed temperature, unknown specific heat, required quantity of heat, etc.

Here is how to use this calculator for different kinds of problems.

### Example 1

600 g piece of silver at 85.0 C is placed into 400 g of water at 17.0 C in 200 g brass calorimeter. Final temperature of the water in the calorimeter is 22.0 C. What is the specific heat of silver?

How to use calculator:

- Clear the table by pressing button
**Clear table** - Add the following rows:

Substance | Mass, kg | Specific heat, J/kg*C | Initial temperature, C | Final temperature, C |
---|---|---|---|---|

Brass | 0.2 | 380 | 17 | 22 |

Water | 0.4 | 4200 | 17 | 22 |

Silver | 0.6 | ? | 85 | 22 |

**Pay attention to question mark in silver's specific heat cell**

- Calculator solves the problem and outputs the solution - specific heat : 232.3 J/(kg*C), quite close to table value for specific heat of silver.

### Example 2

3 kg of water at 20.0 C reaches boiling point in 1 kg aluminium vessel. The specific heat of water is 4200 J/(kg*C), the specific heat of aluminium is 920 J/(kg*C). What is the required quantity of heat?

How to use calculator:

- Clear the table by pressing button
**Clear table** - Add the following rows:

Substance | Mass, kg | Specific heat, J/kg*C | Initial temperature, C | Final temperature, C |
---|---|---|---|---|

Water | 3 | 4200 | 20 | 100 |

Aluminium | 1 | 920 | 20 | 100 |

- Input ? (question mark) in
**Heat**field. - Calculator solves the problem and outputs the solution - heat : -1081600 Joules. Minus means that surroundings lost this amount to boil the water.

### Example 3

2 kg piece of lead at 90.0 C is placed into 1 kg of water at 20.0 C in 100 g copper calorimeter. What is the final temperature of the water (assuming there is no heat loss to the environment)?

How to use calculator:

- Clear the table by pressing button
**Clear table** - Add the following rows:

Substance | Mass, kg | Specific heat, J/kg*C | Initial temperature, C | Final temperature, C |
---|---|---|---|---|

Copper | 0.1 | 390 | 20 | ? |

Water | 1 | 4200 | 20 | ? |

Lead | 2 | 130 | 90 | ? |

**Pay attention to the question marks in all final temperature cells**

- Calculator solves the problem and outputs the solution - final temperature : 24.0 C

### Specific heats table

Sometimes problem does not list specific heats for involved substances. Normally you can look them up in handbooks, but for usability of this page I have listed some of them right below.

Substance | Specific heat, J/kg*C |
---|---|

Aluminum | 880 |

Acetone | 2180 |

Benzene | 1700 |

Bismuth | 130 |

Water | 4200 |

Glycerin | 2400 |

Germany | 310 |

Iron | 457 |

Gold | 130 |

Potassium | 760 |

Brass | 380 |

Lithium | 4400 |

Magnesium | 1300 |

Copper | 390 |

Sodium | 1300 |

Nickel | 460 |

Tin | 230 |

Mercury | 138 |

Lead | 130 |

Silver | 235 |

Ethyl alcohol | 2430 |

Steel | 460 |

Cast iron | 500 |

Sources:

- Wikipedia: Heat
- Wikipedia: Thermodynamic equilibrium
- Examples - random internet search

## Comments