homechevron_rightProfessionalchevron_rightStatistics

# Log-normal distribution

It calculates the probability density function (PDF) and cumulative distribution function (CDF) of long-normal distribution by a given mean and variance.

Lognormal distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed.
Probability density function (PDF) of the log-normal distribution formula:
${\frac {1}{x\sigma {\sqrt {2\pi }}}}\ e^{-{\frac {\left(\ln x-\mu \right)^{2}}{2\sigma ^{2}}}}$

### Log-normal distribution

Digits after the decimal point: 5
Probability density function value

Cumulative distribution function value

PDF Graph
CDF Graph
Save the calculation to reuse next time, to extension embed in your website or share share with friends.

Cumulative density function (CDF) of the lognormal distribution formula:
${\frac {1}{2}}+{\frac {1}{2}}\operatorname {erf} {\Big [}{\frac {\ln x-\mu }{{\sqrt {2}}\sigma }}{\Big ]}$

To calculate log-normal distribution quantiles you can use the following calculator:

### Log-normal distribution quantile function

Digits after the decimal point: 2
Quantile

Save the calculation to reuse next time, to extension embed in your website or share share with friends.