Inverse Hyperbolic Functions

Calculation of inverse hyperbolic functions of given argument

This page exists due to the efforts of the following people:

Timur

Timur

Created: 2011-06-17 22:36:33, Last updated: 2021-02-24 12:20:35
Creative Commons Attribution/Share-Alike License 3.0 (Unported)

This content is licensed under Creative Commons Attribution/Share-Alike License 3.0 (Unported). That means you may freely redistribute or modify this content under the same license conditions and must attribute the original author by placing a hyperlink from your site to this work https://planetcalc.com/1118/. Also, please do not modify any references to the original work (if any) contained in this content.

See also Hyperbolic functions calculator

This calculator shows values of inverse hyperbolic functions of a given argument

PLANETCALC, Inverse Hyperbolic Functions

Inverse Hyperbolic Functions

Digits after the decimal point: 2
The file is very large. Browser slowdown may occur during loading and creation.

Areasine or inverse hyperbolic sine
\operatorname{Arsh}x=\ln(x+\sqrt{x^2+1})
Odd, continuously increasing function.

Areacosine or inverse hyperbolic cosine
\operatorname{Arch}x=\ln \left( x+\sqrt{x^{2}-1} \right)
Increasing function. Function is defined only for x greater or equal 1.

Areatangent or inverse hyperbolic tangent
\operatorname{Arth}x=\ln\left(\frac{\sqrt{1-x^2}}{1-x}\right)=\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)
Odd, continuously increasing function. Function is defined only for x greater then -1 and less then +1.

Areacotangent or inverse hyperbolic cotangent
\operatorname{Arcth}x=\ln\left(\frac{\sqrt{x^2-1}}{x-1}\right)=\frac{1}{2}\ln\left(\frac{x+1}{x-1}\right)
Odd, continuously decreasing function.

Areasecant or inverse hyperbolic secant
\operatorname{Arsch}x=\pm\ln\left(\frac{1+\sqrt{1-x^2}}{x}\right)
Multivalued function

Areacosecant or inverse hyperbolic cosecant
\operatorname{Arcsch}x=\left\{\begin{array}{l}\ln\left(\frac{1-\sqrt{1+x^2}}{x}\right),\quad x<0 \\ \ln\left(\frac{1+\sqrt{1+x^2}}{x}\right),\quad x>0\end{array}\right
Odd decreasing function. Function is not defined for x = 0.

URL copied to clipboard
PLANETCALC, Inverse Hyperbolic Functions

Comments