homechevron_rightProfessionalchevron_rightEngineering

Inverse Hyperbolic Functions

Calculation of inverse hyperbolic functions of given argument

Creative Commons Attribution/Share-Alike License 3.0 (Unported)

This content is licensed under Creative Commons Attribution/Share-Alike License 3.0 (Unported). That means you may freely redistribute or modify this content under the same license conditions and must attribute the original author by placing a hyperlink from your site to this work https://planetcalc.com/1118/. Also, please do not modify any references to the original work (if any) contained in this content.

See also Hyperbolic functions

This calculator shows values of inverse hyperbolic functions of given argument

PLANETCALC, Inverse Hyperbolic Functions

Inverse Hyperbolic Functions

Digits after the decimal point: 2

Areasine or inverse hyperbolic sine
\operatorname{Arsh}x=\ln(x+\sqrt{x^2+1})
Odd, continuously increasing function.

Areacosine or inverse hyperbolic cosine
\operatorname{Arch}x=\ln \left( x+\sqrt{x^{2}-1} \right)
Increasing function. Function is defined only for x greater or equal 1.

Areatangent or inverse hyperbolic tangent
\operatorname{Arth}x=\ln\left(\frac{\sqrt{1-x^2}}{1-x}\right)=\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)
Odd, continuously increasing function. Function is defined only for x greater then -1 and less then +1.

Areacotangent or inverse hyperbolic cotangent
\operatorname{Arcth}x=\ln\left(\frac{\sqrt{x^2-1}}{x-1}\right)=\frac{1}{2}\ln\left(\frac{x+1}{x-1}\right)
Odd, continuously decreasing function.

Areasecant or inverse hyperbolic secant
\operatorname{Arsch}x=\pm\ln\left(\frac{1+\sqrt{1-x^2}}{x}\right)
Multivalued function

Areacosecant or inverse hyperbolic cosecant
\operatorname{Arcsch}x=\left\{\begin{array}{l}\ln\left(\frac{1-\sqrt{1+x^2}}{x}\right),\quad x<0 \\ \ln\left(\frac{1+\sqrt{1+x^2}}{x}\right),\quad x>0\end{array}\right
Odd decreasing function. Function is not defined for x = 0.

URL copied to clipboard
Creative Commons Attribution/Share-Alike License 3.0 (Unported) PLANETCALC, Inverse Hyperbolic Functions

Comments