homechevron_rightStudychevron_rightMath

Matrix Multiplication

Matrix Multiplication

Calculator computes the product of two matrices. Some theory on the topic is placed below the calculator.

PLANETCALC, Matrix Multiplication

Matrix Multiplication

Digits after the decimal point: 2
Result
 
Save the calculation to reuse next time, to extension embed in your website or share share with friends.

For those who forgot, The product C of two matrices A(m \times n) and B(n \times q) is defined as:
A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix},\;\;\; B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1q} \\ b_{21} & b_{22} & \cdots & b_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nq} \end{bmatrix}.

C = A \times B = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1q} \\ c_{21} & c_{22} & \cdots & c_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mq} \end{bmatrix},

where:
c_{i,j} = \sum_{r=1}^n a_{i,r}b_{r,j} \;\;\; \left(i=1, 2, \ldots m;\;j=1, 2, \ldots q \right).

Therefore, in order for matrix multiplication to be defined, the dimensions of the matrices must satisfy
(n \times m)(m \times p)=(n \times p)

Note that matrix multiplication is not commutative (unless A and B are diagonal and of the same dimension).

Comments