homechevron_rightStudychevron_rightMathchevron_rightAlgebrachevron_rightlinear algebra

Matrix Multiplication

Matrix Multiplication

Creative Commons Attribution/Share-Alike License 3.0 (Unported)

This content is licensed under Creative Commons Attribution/Share-Alike License 3.0 (Unported). That means you may freely redistribute or modify this content under the same license conditions and must attribute the original author by placing a hyperlink from your site to this work https://planetcalc.com/1208/. Also, please do not modify any references to the original work (if any) contained in this content.

Calculator computes the product of two matrices. Some theory on the topic is placed below the calculator.

PLANETCALC, Matrix Multiplication

Matrix Multiplication

Digits after the decimal point: 2

For those who forgot, The product C of two matrices A(m \times n) and B(n \times q) is defined as:
A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix},\;\;\; B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1q} \\ b_{21} & b_{22} & \cdots & b_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nq} \end{bmatrix}.

C = A \times B = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1q} \\ c_{21} & c_{22} & \cdots & c_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mq} \end{bmatrix},

c_{i,j} = \sum_{r=1}^n a_{i,r}b_{r,j} \;\;\; \left(i=1, 2, \ldots m;\;j=1, 2, \ldots q \right).

Therefore, in order for matrix multiplication to be defined, the dimensions of the matrices must satisfy
(n \times m)(m \times p)=(n \times p)

Note that matrix multiplication is not commutative (unless A and B are diagonal and of the same dimension).

URL copied to clipboard
Creative Commons Attribution/Share-Alike License 3.0 (Unported) PLANETCALC, Matrix Multiplication