# Second, third, and other derivatives

Evaluates first, second third and other derivatives of a single argument function

This content is licensed under Creative Commons Attribution/Share-Alike License 3.0 (Unported). That means you may freely redistribute or modify this content under the same license conditions and must attribute the original author by placing a hyperlink from your site to this work https://planetcalc.com/1772/. Also, please do not modify any references to the original work (if any) contained in this content.

This calculator finds the first, second, third, and other derivatives of an entered function.

Use the "Function" field to enter a mathematical expression with an x variable. You can use operations like addition +, subtraction -, division /, multiplication *, power ^, and common mathematical functions. Full syntax description can be found below the calculator.

### Function formula syntax

In function notation you can use one variable (always use **x**), brackets, pi number (**pi**), exponent (**e**), operations: addition **+**, subtraction **-**, division **/**, multiplication *****, power **^**.

You can use following common functions: **sqrt** - square root,**exp** - power of exponent,**lb** - logarithm to base 2,**lg** - logarithm to base 10,**ln** - logarithm to base e,**sin** - sine,**cos** - cosine,**tg** - tangent,**ctg** - cotangent,**sec** - secant,**cosec** - cosecant,**arcsin** - arcsine,**arccos** - arccosine,**arctg** - arctangent,**arcctg** - arccotangent,**arcsec** - arcsecant,**arccosec** - arccosecant,**versin** - versine,**vercos** - vercosine,**haversin** - haversine,**exsec** - exsecant,**excsc** - excosecant,**sh** - hyperbolic sine,**ch** - hyperbolic cosine,**th** - hyperbolic tangent,**cth** - hyperbolic cotangent,**sech** - hyperbolic secant,**csch** - hyperbolic cosecant, **abs** - module, **sgn** - signum (sign), **log__ p - logarithm to base p, f.e. log7(x) - logarithm to base 7, **root__

*p*- p-th root, f.e. root3(x) - cubic root

You may also look at Derivative to calculate the first derivative with a step-by-step description.

#### Similar calculators

**

**PLANETCALC, Second, third, and other derivatives

## Comments