Geometric progression
This calculator computes n-th term and sum of geometric progression
This content is licensed under Creative Commons Attribution/Share-Alike License 3.0 (Unported). That means you may freely redistribute or modify this content under the same license conditions and must attribute the original author by placing a hyperlink from your site to this work https://planetcalc.com/179/. Also, please do not modify any references to the original work (if any) contained in this content.
Geometric progression is a sequence of numbers where each term after the first is found by multiplying the previous one by a fixed non-zero number called the common ratio.
If the common ratio module is greater than 1, progression shows the exponential growth of terms towards infinity; if it is less than 1, but not zero, progression shows exponential decay of terms towards zero.
N-th term of the progression is found as
Partial sum to n
where q is not equal to 1
For q =1
The number of terms in infinite geometric progression will approach to infinity . The sum of infinite geometric progression can only be defined if the common ratio ranges from -1 to 1 inclusive.
Comments