# Center of mass of a triangle

This online calculator finds the centroid, or barycenter (center of gravity) of a triangle by the coordinates of its vertices

### This page exists due to the efforts of the following people:

#### Timur

• Article : Center of mass of a triangle - Author, Translator ru - en
• Calculator : Centroid of a triangle - Author, Translator ru - en
Created: 2021-07-02 04:27:06, Last updated: 2021-07-02 04:29:37

This content is licensed under Creative Commons Attribution/Share-Alike License 3.0 (Unported). That means you may freely redistribute or modify this content under the same license conditions and must attribute the original author by placing a hyperlink from your site to this work https://planetcalc.com/9363/. Also, please do not modify any references to the original work (if any) contained in this content.

Center of mass (center of gravity, barycenter) of a triangle for a triangle that has a uniform density (or at the vertices of which there are equal masses) is located in the centroid of the triangle. The centroid of a triangle is the point of intersection of the medians of the triangle. The centroid is one of the so-called remarkable points of a triangle. For example, in addition to the fact that it is the center of gravity, it also divides each median in a 2:1 ratio, counting from the vertex, and three line segments connecting the vertices of the triangle with the centroid divide this triangle into three equal triangles.

To calculate the position of the center of gravity by the coordinates of the vertices of the triangle, you need to calculate the arithmetic mean of the coordinates of the vertices along the x-axis and along the y-axis, which is what the calculator below does.

#### Third vertex

Digits after the decimal point: 2
Center of mass

URL copied to clipboard

#### Similar calculators

PLANETCALC, Center of mass of a triangle